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Introduction 
In modeling and control of power equipment, mathematical models are often used to develop 
robust control systems. The models are used both in the calculation of performance metrics and 
in determining control set-point parameters. These one-dimensional control functions require a 
method to determine an output value given some known input parameter. This paper will 
describe various mathematical modeling methods that are used in control systems as well as the 
advantages and disadvantages of each method. 
 

Background 
One-dimensional mathematical models are used extensively in sophisticated modern control 
systems. Generically these models are:  
 
 � = �(�) 
 
Where x is an independent variable and y is the desired output. A wide variety of functions are in 
control system implementations. Examples include: 
 

• Establishing an ignition timing angle set-point as a function of engine speed 
• Predicting the specific power required for a reciprocating gas compressor as a function of 

compression ratio 
• Predicting the incremental fuel consumption on a two-shaft gas turbine as a function of 

off optimum power turbine speed 
• Predicting the incremental fuel consumption on a reciprocating engine as a function of 

the engine torque 
• Establishing an air manifold pressure set-point as a function of the engine power 
• Modeling the operating limits of a synchronous generator (D curve) 
• The linearization of the signal output from a tank level gauge to the volume of fluid in the 

tank.  
 

Three broad categories are used to represent these models. The first method is based on 
mathematic equations that represent the underlying physics. The second method employs curve 
fit equations such as polynomial, exponential, power, etc. The third method employs look-up 
tables. Variants to these methods will be discussed later.  
 

Physics-Based Models 
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Mathematic equation models based on physics are used where the underlying mathematics are 
well understood and the parameters in the equation are easily measured. Models of these types 
are often categorized as mechanistic models. As an example, the estimation of the inertia force 
from a reciprocating piston and connecting rod can be modeled as a function of crank angle 
using the following equation: 
 
 � = �	
�(cos(�) +

�

�
 cos(2�)) 

 
Where: 
 � is the instantaneous inertia force  
 � is the effecting rotating mass of the piston and connecting rod 
 	 is the radius of the crankshaft 
 
 is the rotational velocity of the crankshaft in radians per unit time 
 � is the instantaneous crank angle 
 � is the length of the connecting rod 
 
While this equation is relatively straight forward, it does have some limitations. For example, the 
equation includes a simplification using the series expansion approximation. In addition, the 
mass should include the mass of all reciprocating components (piston, rings, and if employed, 
piston rod and cross-head) and a portion (estimated at 2/3) of the mass of the connecting rod. 
Even though there are assumptions in using this equation, the equation is reasonably accurate. 
Rotational velocity is easily measured and accurate in most control systems; all other parameters 
are constants with the exception of the instantaneous crank angle. In most control applications, it 
is not necessary to calculate the instantaneous force and, therefore, the instantaneous crank angle 
is not required. Instead, the peak forces are of interest and the angle range where the load is 
reversed on the connecting rod bearing (especially on a double acting compressor piston), all are 
readily calculated using this formula provide the constants are known.  
 
When using physics based numbers, one must be careful to make sure the parameters used in the 
equation do not result in numeric overflows. The most typical cause of numeric overflows is 
when a dynamic parameter (such as engine speed) is in the denominator and it approaches zero. 
Overflows can also occur when a parameter has an exponent such as the rotational velocity in the 
equation above. Careful data checking and memory sizing can avoid numeric overflow issues. 
 

Curve Fit Equations 
Curve fit equations are typically used where the underlying physics are generally known but too 
complicated to model in detail and the function is easily measured. These types of curves are 
generally considered to be empirical models. An example is determining the specific power 
required on a reciprocating compressor. To estimate the efficiency losses through the compressor 
cylinder (and therefore predict the power requirements), one must know the geometric details of 
the internal cylinder passages, compressor valves, and the geometry of the compressor cylinder. 
With this information, the gas flow velocities and static pressure losses can be predicted and the 
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efficiency estimated. In contrast, an instrument can be used to measure the actual pressure in the 
compressor cylinder as a function of crank angle. With the basic cylinder geometry known 
(cylinder bore and stroke), the specific power can be measured.  
 
Most operators of large reciprocating compressors regularly use such instruments as part of their 
maintenance practice. The operator will gather operating information across a range of operating 
conditions that can be used to predict the required specific power requirements. Statistical data 
regressions are performed to fit the measured data to mathematical equations. An example is 
shown in Figure 1. The data is fitted to a third order polynomial using a least square method. A 
third order polynomial equation has the form: 
 

� = �� + �� � + �� �� + �� �� 
 
Where: 
 � is the independent variable (the input parameter) 
 � is the dependant variable (the output parameter) 
 �� through �� are the polynomial coefficients 
 
The data fits reasonably well in this example with a correlation coefficient (R2) of 0.9936 (a 
value of 1.0000 is a perfect fit).     
 

 

 
Figure 1- Third order polynomial fit of specific power requirements for a gas compressor 

Even with a good fit of the data, one has to be careful using curve fit equations in control 
systems. If the curve is not fit across the entire operating range, unpredicted results may be 
produced by the curve fitted equations. In Figure 2, the fitted curve is extended to compression 
ratios beyond the gathered dataset. From the graph we see significant deviations from the fitted 
curve (black line) to a curve characterized by the underlying physics. The error is especially 

y = 76.612x3 - 383.12x2 + 660.61x - 362.07

R² = 0.9936
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large at compression ratios below 1.04 where the curve fit equation would predict the 
compressor is a power generator rather than a power consumer.  
 

 
Figure 2 - Same curve as Figure 1 with the curve extended to possible compression rations 

When curve fitting data for control systems, it is always a good idea to include pseudo data in the 
dataset at the extreme ranges of expected operating conditions if measured values do not exist. 
This will help ensure that the fitted equation will provide reasonable values across the entire 
operating range. Figure 3 demonstrates adding reasonable pseudo points to the curve fit data set. 
Note that the predicted specific power is now much closer to the expected curve shape for 
operating conditions outside the test data set. In this case, adding the pseudo points did not 
significantly degrade the accuracy of the curve fit. The correlation coefficient is only slightly 
lower (0.9922) when compared to the curve fit without the pseudo points (0.9936). 
 

y = 76.612x3 - 383.12x2 + 660.61x - 362.07

R² = 0.9936
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Figure 3 - Same curve as Figure 1 with pseudo points added 

 

Look-up Table Models 
Look-up table models employ a series of discrete points. To determine the output of the function 
for all input values, an interpolation is performed using the points on the independent axis closest 
to the input for the independent variable. For example, using the five point curve shown in 
Figure 4, the expected specific power requirement at a compression ratio of 1.65 yields an 
interpolated value of 30 BHp/MMSCFD. The look function is modeled reasonably using just a 
few points. 
 
Many different types of interpolation methods can be used to determine the expected output of 
the function between data points. The simplest and most common form is linear regression. 
However, linear regressions don’t always model a function well. Other interpolation methods 
include Newton series, cubic splines, Neville’s schema, and many others.  
 

y = 22.487x3 - 116.99x2 + 233.29x - 137.59

R² = 0.9922
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Figure 4 - Same data as Figure 2 with a four-piece linear look-up 

Figure 5 shows an engine break specific fuel consumption curve as a function of engine speed. 
The four point linear look-up curve is reasonably accurate at engine speeds greater than 85% but 
is not generally accurate at speeds below that range. In this case, the third order polynomial fit 
curve is overall more accurate than the four point linear look-up curve. Note that as more points 
are added to the linear look-up curve, the accuracy using the look-up method is improved. This is 
achieved at a cost of additional computer memory and processor computational requirements.  
 

 
Figure 5 - Linear look-up table with insufficient number of points 
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Zooming into Figure 5 for engine speeds greater than 95%, (as shown in Figure 6), the third 
order polynomial fit curve has some inaccuracies and falls sharply as speed increases. In this 
case, adding pseudo points to improve the accuracy at the higher speeds will degrade the 
accuracy of the curve at lower speeds.  
 

 
Figure 6 - Fuel curve detail with cubic spline 

An alternative to both the linear look-up and third order polynomial fit in this situation is to use a 
cubic spline look-up table. Cubic spline methods are a hybrid of polynomial curve fit and look-
up tables. Each line segment between points has its own set of polynomial coefficients creating a 
piece-wise polynomial curve. An advantage of a cubic spline fit is it guarantees the curve will 
pass through each point in the table and the line will be a smooth curve as it passes through each 
point. Cubic splines can create wildly oscillating curves in some cases. The oscillation can be 
minimized in most cases by using polar splines or splines based on barycentric coordinate 
systems. 
 
Other forms (other than polynomial) of piece-wise equations can be used as well. If piece-wise 
equations are used, care must be taken to ensure a contiguous curve exists at the transition point 
between curve segments.  
 

A Real Example 
Consider modeling the available capacity from a synchronous three-phase generator. The real 
power capacity is dependent on the reactive power as shown in Figure 7 below. This curve is 
commonly called a D curve. The challenge is to accurately model this curve over the entire range 
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because of its distinctly different shape in three sections of the curve. For this curve, polynomial 
curve fit equations are not a reliable fit. Modeling the curve as three separate fourth order 
polynomials results in a reasonable fit of the curve except in the upper right hand corner where 
there is a discontinuity. Modeling the curve with 15 point piecewise linear look-up and 18 point 
cubic splines both result in very good fits to the curve. The cubic spline fit does show some 
minor ripple along the top section of the curve.  
 
It should be noted the points selected for all curves were carefully selected to achieve the best fit. 
For the linear look-up curve, more points are used in the curved sections of the curve while the 
cubic spline curve requires more points in the transition sections of the curve segments (in the 
upper left and upper right corners).  
 
For this curve, the best overall fit was achieved with the 15 point linear look-up curve. The 
largest absolute error for each method is shown in the table below. 
 
Method Third order 

polynomial 
Fourth order 
polynomial 

Three piece 
fourth order 
polynomial 

Six point 
linear look-
up 

Fifteen point 
linear look-
up 

Eighteen 
point cubic 
spline 

Largest 
absolute 
error 

0.645 0.453 0.075 0.104 0.015 0.067 

   
 

 
Figure 7 - Synchronous generator load curve (used with permission) 
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Figure 8 - Interpolation methods on a synchronous generator 

 
A general comparison of the different modeling methods is shown in the table below. 
 
Model Type Comments Computational 

Requirements 
Complexity Accuracy 

Physics based 
equations 

Applicable to situations where the 
input measurements can be accurately 
obtained and reliability calculated. 

Low to 
moderate 

Low High 

Curve fit 
equations 

Can accurately model over a limited 
range. Not generally suitable for online 
changes to coefficients. 

Low to 
moderate 

Low Moderate 

Piece-wise curve 
fit equations 

Can accurately model over a wide 
range. Works well for irregular curves. 
Can change online for segments 
outside the current operating range. 

Moderate to 
high 

Moderate to 
high 

High 

Look-up tables High accuracy requires many points in 
the table. The more points, the more 

Low to 
moderate 

Moderate Moderate 
to high 
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% Real Power (KVA) Third order poly

Fourth order poly Piecewise fourth order

Six point piecewise linear look-up Fifteen point piecewise linear look-up

18 point cubic spline % Real Power (KVA)

Polynomial fits do not 

model the curve well due 

to the piecewise nature 

of the curve.

The piecewise fourth order 

polynomial models the curve 

well but is non-contiguous at 

this transition point.

The six point piecewise linear

look-up curve models the curve 

well except in this area.

The 15 point piecewise linear 

look-up curve and 15 point 

cubic spline curves are almost 

identical to the model curve.

Polynomial fits do not 

model the curve well due 

to the piecewise nature 

of the curve.

The piecewise fourth order 

polynomial models the curve 

well but is non-contiguous at 

this transition point.

The six point piecewise linear

look-up curve models the curve 

well except in this area.

The 15 point piecewise linear 

look-up curve and 18 point 

cubic spline curves both model 

the curve well.
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computationally intense. Works well 
for irregular curves. Can adjust while 
equipment is operating. 

Cubic spline 
look-up tables 

Ensures a smooth continuous curve. 
Difficult to model irregular curves. 
Can adjust while equipment is 
operating if coefficients are 
dynamically generated. Can produce 
curves with oscillating sections. 

Moderate to 
high 

High High 

 

Modifying Data while Operating 
For those times when control configuration data needs to be changed, it is beneficial to be able to 
do so while the equipment is operating. To be able to dynamically modify the control parameters 
while operating minimizes outages and loss of production. Making changes while operating 
should only be performed by a trained professional using extreme caution. Changes while 
operating should never be performed on control curves utilizing polynomial equations. 
 
To a demonstrate why this is a problem, consider the modification of the gas compressor specific 
power curve shown in Figure 1 to the coefficients shown in Figure 3. As the A0 coefficient 
changes from -362.07 to -64.397, the curve jumps up to well over 250 BHp/MMSCFD. 
Likewise, changing the A1 and A2 coefficients also produce unrealistic control curves, it is not 
until all four coefficients are changed that the curve is restored to a realistic shape.  
 

 
Figure 9 - Changing polynomial coefficients 

Changing the parameters used in look-up tables can be performed while operating if the changes 
are made slowly and in small increments. Changing the control curve for tables using cubic 
splines should only be performed if the spline coefficients are dynamically recalculated 
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calculated when the tabular data changes. Like the look-up tables, changes should be made in 
small increments over a long period of time.  
 
If there is any doubt as to the effect of changes to the control curves while the equipment is in 
operation, the changes should be performed when the equipment is not operating. 
 

Conclusion 
Mathematical models are regularly used in control systems for power equipment. Physics-based 
models are suitable where the underlying physics are well understood and the parameters can be 
accurately measured. When physics-based models are not suitable, there are a wide variety of 
interpolation models of which only a fraction have been presented here. For ease of use and 
accuracy, the linear look-up and spline methods are both accurate and reliable for use in control 
systems. Both methods facilitate changing the curve parameters while the equipment is operating 
if implemented carefully. 
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