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Introduction

In modeling and control of power equipment, mathirah models are often used to develop
robust control systems. The models are used badtheircalculation of performance metrics and
in determining control set-point parameters. Thase-dimensional control functions require a
method to determine an output value given some knawput parameter. This paper will
describe various mathematical modeling methodsatetsed in control systems as well as the
advantages and disadvantages of each method.

Background
One-dimensional mathematical models are used ex&ysn sophisticated modern control
systems. Generically these models are:

y=f)

Where x is an independent variable and y is theetbsutput. A wide variety of functions are in
control system implementations. Examples include:

» Establishing an ignition timing angle set-pointaafsinction of engine speed

* Predicting the specific power required for a reagating gas compressor as a function of
compression ratio

* Predicting the incremental fuel consumption on a-shaft gas turbine as a function of
off optimum power turbine speed

* Predicting the incremental fuel consumption on @precating engine as a function of
the engine torque

» Establishing an air manifold pressure set-poird asction of the engine power

* Modeling the operating limits of a synchronous gate (D curve)

» The linearization of the signal output from a tdeNel gauge to the volume of fluid in the
tank.

Three broad categories are used to represent theskels. The first method is based on
mathematic equations that represent the underlyingics. The second method employs curve

fit equations such as polynomial, exponential, povetc. The third method employs look-up
tables. Variants to these methods will be discutsted.

Physics-Based Models
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Mathematic equation models based on physics am wkere the underlying mathematics are

well understood and the parameters in the equatiereasily measured. Models of these types
are often categorized as mechanistic models. Asxample, the estimation of the inertia force

from a reciprocating piston and connecting rod banmodeled as a function of crank angle

using the following equation:

F = mrw?(cos(B) +% cos(2p))

Where:
F is the instantaneous inertia force
m is the effecting rotating mass of the piston aonecting rod
r is the radius of the crankshaft
w is the rotational velocity of the crankshaft idiens per unit time
B is the instantaneous crank angle
l is the length of the connecting rod

While this equation is relatively straight forwarddoes have some limitations. For example, the
equation includes a simplification using the semgpansion approximation. In addition, the
mass should include the mass of all reciprocatmgponents (piston, rings, and if employed,
piston rod and cross-head) and a portion (estimatetl3) of the mass of the connecting rod.
Even though there are assumptions in using thisteqy the equation is reasonably accurate.
Rotational velocity is easily measured and accurateost control systems; all other parameters
are constants with the exception of the instantas@oank angle. In most control applications, it
is not necessary to calculate the instantaneogs famd, therefore, the instantaneous crank angle
is not required. Instead, the peak forces are wfr@st and the angle range where the load is
reversed on the connecting rod bearing (espemallg double acting compressor piston), all are
readily calculated using this formula provide tloastants are known.

When using physics based numbers, one must baittwehake sure the parameters used in the
equation do not result in numeric overflows. Thestiypical cause of numeric overflows is
when a dynamic parameter (such as engine speedjhie denominator and it approaches zero.
Overflows can also occur when a parameter has jponext such as the rotational velocity in the
equation above. Careful data checking and memaiygscan avoid numeric overflow issues.

Curve Fit Equations

Curve fit equations are typically used where thdaulying physics are generally known but too
complicated to model in detail and the functioreasily measured. These types of curves are
generally considered to be empirical models. Anmgda is determining the specific power
required on a reciprocating compressor. To estirtegefficiency losses through the compressor
cylinder (and therefore predict the power requiretsle one must know the geometric details of
the internal cylinder passages, compressor vaares the geometry of the compressor cylinder.
With this information, the gas flow velocities asthtic pressure losses can be predicted and the
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Proutrsifig prime results for a complicated world

efficiency estimated. In contrast, an instrumemt lba used to measure the actual pressure in the
compressor cylinder as a function of crank angléeth\the basic cylinder geometry known
(cylinder bore and stroke), the specific power lbarmeasured.

Most operators of large reciprocating compressegsilarly use such instruments as part of their
maintenance practice. The operator will gather apeg information across a range of operating
conditions that can be used to predict the requspeztific power requirements. Statistical data
regressions are performed to fit the measured wataathematical equations. An example is
shown in Figure 1. The data is fitted to a thirdesrpolynomial using a least square method. A
third order polynomial equation has the form:

y=A0+A1x+A2x2+A3x3

Where:
x is the independent variable (the input parameter)
y is the dependant variable (the output parameter)
A, through A5 are the polynomial coefficients

The data fits reasonably well in this example watttorrelation coefficient (B of 0.9936 (a
value of 1.0000 is a perfect fit).

Gas Compressor Specific Power
_ y=76.612x3-383.12x2 + 660.61x - 362.07
a R2=0.9936
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Figure 1- Third order polynomial fit of specific power requirementsfor a gas compressor

Even with a good fit of the data, one has to besfahrusing curve fit equations in control
systems. If the curve is not fit across the entiperating range, unpredicted results may be
produced by the curve fitted equations. In Figuréh2 fitted curve is extended to compression
ratios beyond the gathered dataset. From the grapbee significant deviations from the fitted
curve (black line) to a curve characterized by tinelerlying physics. The error is especially
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large at compression ratios below 1.04 where thevecdit equation would predict the
compressor is a power generator rather than a poovesumer.

Gas Compressor Specific Power
. y=76.612x3-383.12x2+660.61x - 362.07
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Figure 2 - Same curve as Figure 1 with the curve extended to possible compression rations

When curve fitting data for control systems, iaiways a good idea to include pseudo data in the
dataset at the extreme ranges of expected operatimdjtions if measured values do not exist.
This will help ensure that the fitted equation wilovide reasonable values across the entire
operating range. Figure 3 demonstrates adding meas® pseudo points to the curve fit data set.
Note that the predicted specific power is now mugtdser to the expected curve shape for
operating conditions outside the test data sethis case, adding the pseudo points did not
significantly degrade the accuracy of the curve Tite correlation coefficient is only slightly
lower (0.9922) when compared to the curve fit withihne pseudo points (0.9936).
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Gas Compressor Specific Power
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Figure 3 - Same curve as Figure 1 with pseudo pointsadded

Look-up Table Models

Look-up table models employ a series of discretiatpoTo determine the output of the function
for all input values, an interpolation is performesing the points on the independent axis closest
to the input for the independent variable. For eplanusing the five point curve shown in
Figure 4, the expected specific power requiremend aompression ratio of 1.65 yields an
interpolated value of 30 BHp/MMSCFD. The look fupatis modeled reasonably using just a
few points.

Many different types of interpolation methods canused to determine the expected output of
the function between data points. The simplest modt common form is linear regression.
However, linear regressions don't always model r&ction well. Other interpolation methods
include Newton series, cubic splines, Neville’'sesola, and many others.
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Gas Compressor Specific Power
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Figure 4 - Same data as Figure 2 with afour-piece linear look-up

Power Requirement (BHp/MMSCFD)

Figure 5 shows an engine break specific fuel compgiam curve as a function of engine speed.
The four point linear look-up curve is reasonaldguaate at engine speeds greater than 85% but
is not generally accurate at speeds below thateramgthis case, the third order polynomial fit
curve is overall more accurate than the four plimgar look-up curve. Note that as more points
are added to the linear look-up curve, the accuuaayy the look-up method is improved. This is
achieved at a cost of additional computer memody@ncessor computational requirements.

Engine Break Specific Fuel Consumption

—o— BTUIhv/Hp-Hr —— Third order poly fit
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Figure5- Linear look-up tablewith insufficient number of points
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Zooming into Figure 5 for engine speeds greaten ®%2, (as shown in Figure 6), the third

order polynomial fit curve has some inaccuracied fatls sharply as speed increases. In this
case, adding pseudo points to improve the accusaicthe higher speeds will degrade the
accuracy of the curve at lower speeds.

Engine Break Specific Fuel Consumption
—o— BTUlhv/Hp-Hr —— Third order poly fit Cubic spline look-up
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Figure6 - Fuel curve detail with cubic spline

An alternative to both the linear look-up and trorder polynomial fit in this situation is to use a
cubic spline look-up table. Cubic spline methods ahybrid of polynomial curve fit and look-
up tables. Each line segment between points hasvitsset of polynomial coefficients creating a
piece-wise polynomial curve. An advantage of a cidpline fit is it guarantees the curve will
pass through each point in the table and the lildo& a smooth curve as it passes through each
point. Cubic splines can create wildly oscillatiogrves in some cases. The oscillation can be
minimized in most cases by using polar splines gings based on barycentric coordinate
systems.

Other forms (other than polynomial) of piece-wisgiaions can be used as well. If piece-wise
equations are used, care must be taken to ensumatiguous curve exists at the transition point
between curve segments.

A Real Example

Consider modeling the available capacity from achyonous three-phase generator. The real
power capacity is dependent on the reactive poweshawn in Figure 7 below. This curve is
commonly called a D curve. The challenge is to eately model this curve over the entire range
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because of its distinctly different shape in thseetions of the curve. For this curve, polynomial

curve fit equations are not a reliable fit. Modglithe curve as three separate fourth order
polynomials results in a reasonable fit of the euexcept in the upper right hand corner where
there is a discontinuity. Modeling the curve with doint piecewise linear look-up and 18 point

cubic splines both result in very good fits to theve. The cubic spline fit does show some
minor ripple along the top section of the curve.

It should be noted the points selected for all earwere carefully selected to achieve the best fit.
For the linear look-up curve, more points are usetthe curved sections of the curve while the
cubic spline curve requires more points in theditaon sections of the curve segments (in the
upper left and upper right corners).

For this curve, the best overall fit was achievathwhe 15 point linear look-up curve. The
largest absolute error for each method is showhartable below.

Methoc Third order | Fourth ordel | Three piece¢ | Six point Fifteen point| Eighteel
polynomial | polynomial | fourth order | linear look- | linear look- | point cubic
polynomial | up up spline
Largest
absolute 0.645 0.453 0.075 0.104 0.015 0.067
error
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Figure 7 - Synchronous generator load curve (used with per mission)
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Interpolation Methods Applied to a Synchronous Generator
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Figure 8 - Interpolation methods on a synchronous gener ator
A general comparison of the different modeling nodthis shown in the table below.
Model Type Comments Computational | Complexity | Accuracy
Requirements
Physics base Applicable to situations where tl Low to Low High
equations input measurements can be accuratelynoderate
obtained and reliability calculated.
Curve fit Canaccurately model over a limite Low to Low Moderat:
equations range. Not generally suitable for onlinenoderate
changes to coefficients.
Piece-wise curve | Can accurately model over a wi Moderate tc Moderate tc | High
fit equations range. Works well for irregular curves high high
Can change online for segments
outside the current operating range.
Look-up table High accuracy requires many points | Low to Moderat: Moderate
the table. The more points, the more| moderate to high
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computationally intense. Works wi
for irregular curves. Can adjust whilg
equipment is operating.

Cubic spline Ensures a smooth continuous cui Moderate tc High High
look-up tables Difficult to model irregular curves. high
Can adjust while equipment is
operating if coefficients are
dynamically generated. Can produce
curves with oscillating sections.

Modifying Data while Operating

For those times when control configuration datadsde be changed, it is beneficial to be able to
do so while the equipment is operating. To be &bldynamically modify the control parameters
while operating minimizes outages and loss of petida. M aking changes while operating
should only be performed by a trained professional using extreme caution. Changes while
operating should never be performed on controlesintilizing polynomial equations.

To a demonstrate why this is a problem, considembdification of the gas compressor specific
power curve shown in Figure 1 to the coefficiertteven in Figure 3. As the A0 coefficient
changes from -362.07 to -64.397, the curve jumpstapvell over 250 BHp/MMSCFD.
Likewise, changing the Al and A2 coefficients gisoduce unrealistic control curves, it is not
until all four coefficients are changed that theveus restored to a realistic shape.

Gas Compressor Specific Power
. Initial Curve —— Change AO ——Change A0 and Al
2 —— Change A0-A2 — Final curve
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S 300 -
I ]
o _
+ 100 -
[= -
GE) . T T T T
g 10045 12 14 16 18 2l0
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g -300
[ ]
2 500 - _ _
S Compression Ratio

Figure9 - Changing polynomial coefficients

Changing the parameters used in look-up tablebegrerformed while operating if the changes
are made slowly and in small increments. Changimgy dontrol curve for tables using cubic
splines should only be performed if the spline fioeits are dynamically recalculated
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Solutions

calculated when the tabular data changes. Likdablk-up tables, changes should be made in
small increments over a long period of time.

If there is any doubt as to the effect of changethé control curves while the equipment is in
operation, the changes should be performed wheedghgment is not operating.

Conclusion

Mathematical models are regularly used in contysteans for power equipment. Physics-based
models are suitable where the underlying physiesaall understood and the parameters can be
accurately measured. When physics-based modelsoarsuitable, there are a wide variety of
interpolation models of which only a fraction haveen presented here. For ease of use and
accuracy, the linear look-up and spline methodsbath accurate and reliable for use in control
systems. Both methods facilitate changing the cparameters while the equipment is operating
if implemented carefully.
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